当前位置:返回首页 > 信息动态 > 行业动态 >
产品系列
热门产品

齿式联轴器的主要参数同疲劳破坏影响因素

2021-10-28 18:10:25

其一、齿式联轴器的主要参数

(1)额定转矩、较大转矩、许用变动转矩额定转矩是指联轴器持续工况或间断工况时出现的平均转矩的较大值;较大转矩是指联轴器为任何正常工况下产生的转矩的较高值(如启动载荷、冲击载荷、短暂的通过临界点),较大转矩肯定会发生,但时间很短。为了防止弹性元件破坏之后,连接轴的断开,对于船舶主推进传动装置上,一般都带有扭转限位装置,当弹性元件破坏时可以使两个连接轴变成扭转刚性连接,从而保护船舶的正常运行;许用变动转矩是指在传动系统在持续工作的情况下周期性的扭转振动转矩振幅的较大值,由于齿式联轴器具有较好的扭转特性,因此能够很好地改变和优化整个传动系统的扭转振动特性,许用变动转矩是其调整扭转特性所允许的较大值。由于环境温度对许用变动转矩的影响很大,因此,在计算分析中,需要考虑弹性柱销联轴器运行时环境温度的影响,根据环境温度对许用变动转矩进行修正。

(2)动态扭转刚度、阻尼系数、动态径向刚度动态扭转刚度是在一个振动周期内弹性转矩与转角振幅之比,可以通过调整联轴器的动态扭转刚度来实现调整轴系的自振频率。阻尼系数表征在共振区域振动的特征参数。

在传动轴系扭转振动计算中,动态扭转刚度和阻尼系数是齿式联轴器的重要动态特性参数。动态径向刚度以单位径向位移所产生的径向反作用力表示。与联轴器主动端及从动端相连接轴的轴承能够承受由径向位移引起的径向载荷,当安装误差、轴的跳动、热膨胀、基座变形和连接主机的振动引起的径向位移过大时,导致径向载荷过大,可能损坏连接两端轴的轴承。这样给轴承的性能特性提出了高的要求,选用轴承时考虑径向载荷的因素。同时,动态径向刚度是振动分析计算中的重要参数,它的大小对振动分析的准确性影响很大,因此本文开展了齿式联轴器橡胶元件动态径向刚度计算方法的研究。

(3)许用轴向位移、许用径向位移、许用角向位移许用轴向位移主动轴端到从动轴端相对于中间平衡位置的较大允许位移量,它是由安装误差、轴的窜动、热膨胀或者基座变形等因素造成的,轴的轴向位移会使联轴器的主动轴端和从动轴端在轴向产生轴向反作用力,而轴向反作用力也要由于联轴器主动端和从动端相连接轴的轴承来承受;许用径向位移是联轴器主动轴端到从动轴端对轴线垂直方向稳定不变的,缓慢变化的或者周期性变化的较大允许位移量;许用角向位移是联轴器主动轴端与从动轴端沿轴线的较大允许相对偏转角。

(4)许用功率损耗许用功率损耗是指齿式联轴器在工作的时候,所能够承受的功率损失的较大值。由于机械传动过程中,总会发生功率的损耗,而齿式联轴器在传递转矩和功率的过程中,发生功耗的主要原因是振动的作用,并且这些功耗很多都成为热量。由于橡胶的散热性不好、耐热性差,温度过高会使橡胶发生损坏。另外橡胶元件温度过高,可能导致动态扭转刚度的下降,可能会发生共振的严重问题。因此,齿式联轴器橡胶弹性元件损坏的主要原因是功率损耗过多。许用功耗值也成为衡量齿式联轴器动态性能的重要指标。在齿式联轴器设计时一定要考虑功率损失问题,为了增强橡胶元件的散热性,橡胶元件有时会设有辅助通风孔,通风孔的设置加强了橡胶元件的散热效果,在一定程度上保证了橡胶元件的功能。

其二、联轴器橡胶材料疲劳破坏影响因素

法兰梅花联轴器的弹性元件可以选用不同配方的橡胶,联轴器在工作过程中,既受到交变载荷的作用,同时也受到温度、氧气等环境因素的影响。因此,影响橡胶材料疲劳性能的因素很多,这些因素大致可以分为三大类,即橡胶材料配方本身,所受载荷,以及环境因素。

1.橡胶材料配方本身的影响1)橡胶的类型不同类型的橡胶的耐疲劳性能是不同的,橡胶的耐疲劳性能主要体现在两个方面,即抵抗裂纹的产生和抵抗裂纹的生长两个方面。

橡胶的耐疲劳性能和它的耐热性、力学损耗和结晶性等性能有关。耐热性越好的橡胶,耐疲劳性能越好,疲劳寿命越高。橡胶的力学损耗越大,滞后也越大,能够抵抗裂纹的增长,疲劳寿命越高;但力学损耗越大,由于分子内摩擦,也越容易产生动态生热,加速破坏,疲劳寿命又会降低。橡胶的结晶性能也影响其疲劳寿命,在高周疲劳情况下,拉伸结晶的橡胶耐疲劳,低周疲劳情况下,玻璃化转变温度高的橡胶耐疲劳。

2)填料填料的加入会改变材料的刚度和滞后性;填料会造成体系的不均一,使裂纹间断发生偏离,分支及钝化;填料凝聚会增大缺陷和裂纹。

3)硫化体系对橡胶材料进行硫化可以使橡胶长链分子之间产生互相交联的硫键,多硫键比单硫键耐疲劳。同时,交联的密度对橡胶材料的疲劳寿命也有影响,交联密度越大,越不易生热,疲劳寿命相应提高,但交联密度越大,应力越不易分散,疲劳寿命又会减小,因此硫化橡胶存在一个使疲劳寿命较大的较优交联密度。

4)其他配合因素在橡胶材料中添加软化剂能够减少生热,加入抗降解剂和抗老剂能够避免和氧气和臭氧的作用,这些都能够提高疲劳寿命。另外,橡胶的制造工艺,配合剂的分散状态等也会影响橡胶材料的疲劳性能。

2环境因素的影响1)氧气的影响空气中氧气的存在会影响橡胶材料的疲劳寿命,一方面,氧气的存在会影响疲劳裂纹生长的阂值,另一方面,氧气不断在橡胶材料中溶解或扩散,与橡胶分子发生化学反应而破坏橡胶分子的内部结构而使疲劳进程加快。

硫化过程使橡胶的长链分子互相交联,形成巨大的三维网状结构。由于聚合物中的杂质、自身的异常结构或者光能量等因素,橡胶中产生游离基,这些游离基与空气中的氧气反应产生和氢,这些和氢反过来又作为催化剂加速游离基的产生。较后,反应由于的非活化性而停止。

这一过程不断进行,橡胶发生老化,引起机械性能及外观的变化。

氧气主要通过扩散进入橡胶内部。在室温条件下,这一过程进行比较缓慢,氧气在橡胶内部的扩散比较均匀,老化情况也比较均匀;当温度升高时,氧气的扩散速率增加,老化过程加快,氧气主要集中于橡胶表面,因此老化也主要集中在橡胶表面,且温度越高,老化越严重。

增加橡胶的厚度可以减缓过程,增加疲劳寿命。

2)臭氧的影响空气中的臭氧含量很低,含量约为10-g,但研究表明,当橡胶材料及其制品在含量极低的臭氧中暴露很短的时间,也会受到臭氧的攻击而发生破坏。尤其是当橡胶受到拉伸应力时,这些臭氧与橡胶中的碳一碳双键反应,使橡胶结构产生与拉应力方向垂直的龟裂。与氧气对橡胶的老化作用不同的是,臭氧引起的老化并非整体的老化,而是橡胶材料及其制品局部的龟裂。

通过添加防护剂可以抵御臭氧的破坏。

3)温度的影响温度升高能够促进等反应,加快裂纹的产生及生长,因此对疲劳破坏有一定的影响。温度对疲劳寿命的影响主要取决于橡胶配方本身,研究表明,天然橡胶在100℃以内时,疲劳寿命受温度的影响较小,温度从0℃升至100℃时,疲劳寿命降低4倍;而丁苯橡胶在同样的情况下,受温度影响很大。